Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.546
Filtrar
1.
Langmuir ; 40(10): 5214-5227, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469650

RESUMO

Amylose is a linear polysaccharide with a unique ability to form helical inclusion complexes with the appropriate guest components. Numerous studies have been conducted on encapsulation of bioactive compounds for various applications. In the biomedical field, biohybrid micro/nanomotors (MNMs) have emerged as innovative candidates due to their excellent biocompatible and biodegradable properties. This study was inspired by the biohybrid- and enzymatic-propelled MNMs and explored the potential of amylose inclusion complexes (ICs) in creating these MNMs. The study developed a new type of micromotor made from (PEG-co-PBA)-b-amylose. Nanoprecipitation, dimethyl sulfoxide (DMSO), and ultrasound-treated methods were employed to create spherical, thick crystalline, and rod-bacterial-like morphologies, respectively. Candida antarctica lipase B (CALB) was used as the catalytic fuel to induce the motion by the enzymatic degradation of ester linkages in the polymeric segment. Optical microscopy was utilized to observe the motion of the motors following incubation with enzyme concentrations of 5, 10, and 20% (w/w). The results demonstrated that the velocity of the motors increased proportionally with the percentage of added enzyme. Additionally, a comprehensive molecular docking evaluation with PyRx software provided insight into the interaction of the CALB enzyme with polymeric moieties and demonstrated a good affinity between the enzyme and polymer in the binding site. This study provides novel insight into the design and development of enzymatically driven polymeric micromotors and nanomotors.


Assuntos
Amilose , Polímeros , Amilose/química , Simulação de Acoplamento Molecular , Movimento (Física) , Catálise
2.
Int J Biol Macromol ; 265(Pt 2): 130681, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458285

RESUMO

The corn starch nanoparticles were prepared by incorporating three kinds of polyphenols, including quercetin, proanthocyanidins and tannin acid. The physicochemical and digestive properties of corn starch nanoparticles were researched. The quercetin showed a higher complexation index than proanthocyanidins and tannin acid when they complexed with corn starch. The mean size of corn starch quercetin, proanthocyanidins and tannin acid were 168.5 nm, 179.1 nm and 188.6 nm, respectively. XRD results indicated that all the corn starch-polyphenols complex showed V-type crystalline structure, the crystallinity of corn starch-quercetin complex was 19.31 %, which showed more formation of amylose-quercetin single helical formed than the other two starch-polyphenol complexes. In vitro digestion revealed that polyphenols could resist digestion and quercetin increased the content of resistant starch from 23.32 % to 35.24 % and polyphenols can form complexes with starch through hydrophobic interactions or hydrogen bonding. This study indicated the hydrophobic polyphenols had a more significant effect on the digestibility of corn starch. And the cell toxicity assessments demonstrated that all nanoparticles were nontoxic and biocompatible.


Assuntos
Proantocianidinas , Amido , Amido/química , Zea mays/química , Taninos , Proantocianidinas/química , Quercetina , Amilose/química , Polifenóis
3.
Int J Biol Macromol ; 265(Pt 2): 130794, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479661

RESUMO

In this study, four types of maize starch with different amylose contents (3 %, 25 %, 40 %, and 70 %) were used to prepare butyrylated starches. Based on amylose contents, the influence of butyryl group distribution on the structure, thermal and digestive properties of butyrylated maize starch was investigated. The butyrylation reaction mainly substituted butyryl groups on amylose, and the butyryl groups were most easily substituted for the hydroxyl group at the C6 position. The degree of substitution of butyrylated starch reached its maximum when the amylose content was 40 %, and the degree of substitution did not correlate linearly with the amylose content. The butyrylation reaction increased the surface roughness, decreased the crystallinity, enthalpy value and molecular weight of native starch granules, resulting in a decrease in the degree of internal order of the starch and inducing the rearrangement of the amylose molecular chains in the amorphous region of the starch. The combination of the amylose content and the substitution of butyryl groups on amylose affected the digestibility of starch and ultimately increased its resistance. The Pearson correlation coefficient further confirmed the correlation between the distribution of butyryl groups and the structure and properties of butyrylated starch.


Assuntos
Amilose , Zea mays , Amilose/química , Zea mays/química , Amido/química , Peso Molecular , Digestão
4.
Int J Biol Macromol ; 265(Pt 2): 130930, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513898

RESUMO

Pre-formed V-type amylose as a kind of wall material has been reported to carry polyphenols, while the interaction mechanism between V-type amylose and polyphenol is still elusive. In this work, the formation and stability mechanism of a V7-type short amylose-resveratrol complex was investigated via isothermal titration calorimetry, molecular dynamics, and molecular docking. The results presented that two stoichiometric ratios of resveratrol to short amylose were calculated to 0.120 and 0.800, and the corresponding main driving force was hydrogen bonding and hydrophobic interaction, respectively. The folding and unfolding conformation of V7-type short amylose chains appeared alternately during the simulation. Resveratrol tended to be bound in the short amylose helix between 40 ns and 80 ns to form a more stable complex. Hydrogen bonds between resveratrol molecule and O6 at the 22nd glucose molecule/O2 at the 24th glucose molecules and hydrophobic interaction between resveratrol molecule and glucose molecules (19th, 20th, 21st and 23rd) could be found.


Assuntos
Amilose , Simulação de Dinâmica Molecular , Resveratrol , Simulação de Acoplamento Molecular , Amilose/química , Glucose
5.
Int J Biol Macromol ; 265(Pt 2): 131010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513900

RESUMO

Guinea starch nanoparticles (GS-SNP) were developed using ultrasound and nanoprecipitation techniques. The physicochemical, thermal, structural, morphological, pasting, and rheological properties of GS-SNP were examined and compared with native starch. The particle size of GS-SNP was 391.50-206.00 nm, with a PDI of 0.35-0.23 and a zeta potential of -37.5 to -13 mV. The amylose content of GS-SNP increased with a decrease in relative crystallinity, and a VH-type crystalline structure was observed. The GS-SNP were in round shape with some self-aggregated granules. The water and oil absorption capacity, solubility, and gelatinization temperature of GS-SNP increased, but the swelling power was restricted. The viscosity of the GS-SNP dispersion remained almost constant throughout the heating but slightly increased after cooling. A higher degree of shear thinning was observed due to a fluid-like gel network and weak gel structure. The optimum conditions were: 50 % amplitude, 30 min time, and a starch to ethanol ratio (1:4) with 85 % maximum desirability. Overall, the findings suggest that GS-SNP have promising potential for application in a liquid system where viscosity of the system cannot be significantly influenced by temperature.


Assuntos
Amilose , Amido , Amido/química , Guiné , Fenômenos Químicos , Amilose/química , Solubilidade , Viscosidade , Sementes/química
6.
Int J Biol Macromol ; 265(Pt 2): 131031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518930

RESUMO

In this study, the effects of citric acid-autoclaving (CA-A) treatment on physicochemical and digestive properties of the native ginseng starches were investigated. The results showed that ginseng starch exhibited a B-type crystal structure with a low onset pasting temperature of 44.23 ± 0.80 °C, but high peak viscosity and setback viscosity of 5897.34 ± 53.72 cP and 692.00 ± 32.36 cP, respectively. The granular morphology, crystal and short-range ordered structure of ginseng starches were destroyed after CA-A treatment. The more short-chain starches were produced, resulting in the ginseng starches solubility increased. In addition, autoclaving, citric acid (CA) and CA-A treatment promoted polymerization and recrystallization of starch molecules, increased the proportion of amylopectin B1, and B3 chains, and improved molecular weight and resistant starch (RS) content of ginseng starches. The most significant multi-scale structural change was induced by CA-A treatment, which reduced the relative crystallinity of ginseng starch from 28.26 ± 0.24 % to 2.75 ± 0.08 %, and increased the content of RS to 54.30 ± 0.14 %. These findings provided a better understanding of the structure and properties of Chinese ginseng starches and offered new ideas for the deep processing of ginseng foods.


Assuntos
Ácido Cítrico , Panax , Ácido Cítrico/química , Amido/química , Amilopectina/química , Viscosidade , Amido Resistente , Amilose/química
7.
Int J Biol Macromol ; 264(Pt 2): 130733, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471610

RESUMO

Retrograded starches have received increasing attention due to their potential excipient properties in pharmaceutical formulations. However, to evade its application-oriented challenges, modification of retrograded starch is required. The study emphasizes influence of dry heating and the dual heat treatment by dry heating amalgamation with the vacuum heat treatment on quality parameters of retrograded starch. The starch was isolated by using two different extraction media (0.05 % w/v NaOH and 0.03 % citric acid) from Alocasia macrorrhizos and then retrograded separately. Further, retrograded starches were first modified by dry heating and afterwards modified with combination of dry and vacuum heating. Modification decreased moisture, ash content and increased solubility. Modified Samples from NaOH media had higher water holding capacity and amylose content. X-ray diffraction revealed type A and B crystals with increasing crystallinity of retrograded heat-modified samples from NaOH media. Thermogravimetric analysis, differential scanning calorimetry confirmed thermal stability. Shear tests showed shear-thinning behavior whereas dominant storage modulus (G/) over loss modulus (G//), depicting gel-like behavior. Storage, loss, and complex viscosity initially increased, then decreased with temperature. In-vitro release reflects, modified retrograded starches offers versatile drug release profiles, from controlled to rapid. Tailoring starch properties enables precise drug delivery, enhancing pharmaceutical formulation flexibility and efficacy.


Assuntos
Alocasia , Temperatura Alta , Hidróxido de Sódio , Vácuo , Amido/química , Amilose/química , Solubilidade , Viscosidade
8.
Food Chem ; 447: 139012, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492296

RESUMO

In this paper, different NaCl content was added to wheat starch and then subjected to X-ray irradiation to investigate the effect of salt on starch modification by irradiation. The results showed that the degradation of wheat starch intensified with the increase in irradiation dose. When irradiated at the same dose, wheat starch with sodium chloride produced shorter chains, lower molecular weight and amylose content, and higher crystallinity, solubility, and resistant starch than wheat starch without sodium chloride. The energy generated by X-rays dissociating sodium chloride caused damage to the glycoside bonds of the starch molecule. With a further increase in the mass fraction of NaCl, the hydrogen bonds of the starch molecules were broken, and the double helix structure was depolymerized, which exacerbated the extent of irradiation-modified wheat starch. At the same time, starch molecules will be rearranged to form a more stable structure.


Assuntos
Cloreto de Sódio , Amido , Amido/química , Raios X , Triticum/química , Amilose/química
9.
J Chromatogr A ; 1720: 464779, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38447432

RESUMO

A Chiralpak AY-3R column was investigated for analytical enantiomeric separation of twelve racemic γ(δ)-lactones using reversed phase high performance liquid chromatography. Main influence factors, including organic modifier, flow rate and column temperature, were optimized. Five kinds of γ(δ)-lactones were successfully enantioseparated using the established method: γ-nonanolactone, δ-decalactone, δ-undecalactone, δ-dodecalactone and δ-tetradecalactone. Under optimized conditions, enantiomeric peak resolution (Rs) for the five γ(δ)-lactones reached more than 1.09, 1.08, 1.54, 1.43, and 1.11, respectively. Their chromatographic elution behavior was investigated using Van't Hoff equation and Van Deemter equation. It was found that an exothermic process occurred during enantiomeric separation of γ(δ)-lactones using this chromatographic column, and it showed a typical Van Deemter curve. Finally, this method was applied in enantiomeric ratio analysis of γ(δ)-lactones contents for purchased butter samples, and results confirmed the predominant content of the (R)-configuration of δ-dodecalactone in natural animal butter, while in margarine, an equal proportion of (R/S)-configuration of δ-dodecalactone was detected.


Assuntos
Amilose , Lactonas , Amilose/química , Lactonas/química , Cromatografia Líquida de Alta Pressão/métodos , Temperatura , Estereoisomerismo , Manteiga
10.
Int J Biol Macromol ; 265(Pt 1): 130951, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503373

RESUMO

Hsian-tsao polysaccharide (HP) with preferable bioactivities was used to produce starchy gel foods. This study elucidated how interactions of HP (0-0.6 %, w/v) with gelatinized corn starch (CS, 6 %, w/v) reduced in vitro digestibility of CS. The CS digestibility (82.85 %, without HP) was reduced to 68.85 % (co-heated) and 74.75 % (non-co-heated) when 0.6 % HP was added, demonstrating that HP reduced the CS digestibility to a larger extent under co-heating by both HP-CS interactions and inhibiting digestive enzyme activities by HP which was dominated under non-co-heating. Moreover, when co-heated, HP bonded to the amylose of CS via physical forces with a composite index of 21.95 % (0.4 % HP), impeded CS swelling and promoted CS aggregation with the average particle size increased to 42.95 µm (0.6 % HP). Also, the HP-CS complexes formed strong association network structures that increased their apparent viscosity and digestive fluid viscosity. Additionally, HP enhanced the short-range ordered structure and crystal structure of CS. These results evidenced that HP-CS interactions significantly reduced the CS digestibility by forming physical barriers, viscosity effects, and ordered structures, to hinder the enzymes from accessing starch matrices. This laid a foundation for applying HP to starchy foods with a low predicted glycemic index.


Assuntos
Medicamentos de Ervas Chinesas , Amido , Zea mays , Amido/química , Zea mays/química , Polissacarídeos/química , Amilose/química
11.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473945

RESUMO

A reversed-phase high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of the potential impurities of dexketoprofen, including the distomer R-ketoprofen. After screening the separation capability of four polysaccharide columns (Lux Amylose-1, Lux Amylose-2, Lux Cellulose-1 and Lux Cellulose-2) in polar organic and in reversed-phase modes, appropriate enantioseparation was observed only on the Lux Amylose-2 column in an acidified acetonitrile/water mixture. A detailed investigation of the mobile phase composition and temperature for enantio- and chemoselectivity showed many unexpected observations. It was observed that both the resolution and the enantiomer elution order can be fine-tuned by varying the temperature and mobile phase composition. Moreover, hysteresis of the retention times and enantioselectivity was also observed in reversed-phase mode using methanol/water mixtures on amylose-type columns. This could indicate that the three-dimensional structure of the amylose column can change by transitioning from a polar organic to a reversed-phase mode, which affects the enantioseparation process. Temperature-dependent enantiomer elution order and rare enthalpic/entropic controlled enantioseparation in the operative temperature range were also observed in reversed-phase mode. To find the best methodological conditions for the determination of dexketoprofen impurities, a full factorial optimization design was performed. Using the optimized parameters (Lux Amylose-2 column with water/acetonitrile/acetic acid 50/50/0.1 (v/v/v) at a 1 mL/min flow rate at 20 °C), baseline separations were achieved between all compounds within 15 min. Our newly developed HPLC method was validated according to the current guidelines, and its application was tested on commercially available pharmaceutical formulations. According to the authors' knowledge, this is the first study to report hysteretic behavior on polysaccharide columns in reversed-phase mode.


Assuntos
Amilose , Cromatografia de Fase Reversa , Cetoprofeno/análogos & derivados , Trometamina , Amilose/química , Temperatura , Polissacarídeos/química , Celulose/química , Cromatografia Líquida de Alta Pressão/métodos , Água , Acetonitrilas , Estereoisomerismo
12.
Int J Biol Macromol ; 261(Pt 2): 129869, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302031

RESUMO

The digestibility of starch-based foods is receiving increased attention. To date, the full understanding of how including L-theanine (THE) can modify the structural and digestive properties of starch has not been fully achieved. Here, we investigated the multi-scale structure and digestibility of maize starch (MS) regulated by THE in ultrasound field and the molecular interactions. Ultrasound disrupted the structure of starch granules and opened the molecular chains of starch, promoting increased THE binding and producing more low-order or disordered crystal structures. In this case, the aggregation of starch molecules, especially amylose, was reduced, leading to increased mobility of the systems. As a result, the apparent viscosity, G', and G" were significantly decreased, which retarded the starch regeneration. Density functional theory calculations indicated that there were mainly non-covalent interactions between THE and MS, such as hydrogen bonding and van der Waals forces. These interactions were the main factors contributing to the decrease in the short-range ordering, the helical structure, and the enthalpy change (ΔH) of MS. Interestingly, the rapidly digestible starch (RDS) content of THE modified MS (MS-THE-30) decreased by 17.89 %, while the resistant starch increased to 26.65 %. These results provide new strategies for the safe production of resistant starch.


Assuntos
Glutamatos , Amido Resistente , Zea mays , Zea mays/química , Amido Resistente/metabolismo , Ultrassom , Amido/química , Amilose/química , Digestão
13.
Int J Biol Macromol ; 261(Pt 2): 129918, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309388

RESUMO

This study examined four types of japonica rice from Yangtze River Delta, categorized based on amylose content (AC) and protein content (PC): high AC with high PC, high AC with low PC, low AC with high PC, and low AC with low PC. It systematically explored the effect of starch, protein and their interactions on eating quality of japonica rice. Rheological analysis revealed that increased amylose, long chains amylopectin or protein levels during cooking strengthen starch-protein interactions (hydrogen bonding), forming a firm gel network. Scanning electron microscopy showed that increased amylose, long chains amylopectin or protein levels made protein and starch more stable in combination during cooking, limiting starch structure cleavage. Therefore, the eating quality of high AC in similar PC japonica rice and high PC in similar AC japonica rice were poor. Further, correlation and random-forest analysis (RFA) identified amylose as the most influential factor in starch-protein interactions affecting rice eating quality, followed by amylopectin and protein. RFA also revealed that in high AC japonica rice, the interactions of Fb3 and albumin with amylose were more conducive to forming good eating quality. In low AC japonica rice, the interactions of Fb2 and prolamin with amylose were more beneficial.


Assuntos
Oryza , Amido , Amido/química , Amilopectina/química , Amilose/química , Oryza/química , Rios
14.
Int J Biol Macromol ; 261(Pt 2): 129919, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309404

RESUMO

The effect of high-pressure processing (HPP) modification (200, 400, and 600 MPa for 10 min) on the physico-chemical, functional, structural, and rheological properties of white finger millet starch (WFMS) was studied. Measured amylose content, water, and oil absorption capacity, alkaline water retention, and pasting temperature increased significantly with the intensity of pressure. All color parameters (L, a, b values, and ΔC) were affected by HPP treatment, and paste clarity of modified starch decreased significantly with an increase in storage time. The samples' least gelation concentration (LGC) is in the range of 8-14 %. An increasing solubility and swelling power are noted, further intensifying at the elevated temperature (90 °C). The structural changes of WFMS were characterized by XRD, SEM, and FTIR spectroscopy. Starch modified at 600 MPa showed a similar pattern as 'B'-type crystalline, and the surfaces of starch deformed because of the gelatinization. Applied pressure of 600 MPa affected the FTIR characteristic bands at 3330, 2358, and 997 cm-1, indicating a lower crystallinity of the HPP-600 modified sample. According to DSC analysis, even at 600 MPa, WFMS is only partially gelatinized. This work provides insights for producing modified WFM starches by a novel physical modification method.


Assuntos
Eleusine , Amido , Amido/química , Amilose/química , Fenômenos Químicos , Solubilidade , Água/química
15.
Int J Biol Macromol ; 261(Pt 2): 129920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311128

RESUMO

A novel chestnut porous starch nanoparticle (PSNP) was successfully synthesized, combining the properties of starch nanoparticle (SNP) and porous starch. The SNP obtained through ultrasonic and acid hydrolysis, exhibited a smaller particle size (173.9 nm) and a higher specific surface area (SSA) compared to native starch. After the synergistic hydrolysis by α-amylase and glucoamylase, the porous structure appeared on the surface of SNP. The prepared PSNP had a size of 286.3 nm and the highest SSA. In the adsorption experiments, PSNP showed higher capacities for adsorbing water, oil and methylene blue (MB) compared to other samples. The acid and enzymatic treatments resulted in a decrease in the levels of total starch content and amylose ratio. Furthermore, the treatments increased the levels of relative crystallinity (RC) and solubility, while decreasing the short-range ordered structure and swelling ratio at high temperatures. It was observed that the SSA of starch granules positively correlated with the MB and water adsorption capacity (WAC), solubility, and RC. These findings highlight the potential of the novel PSNP as an efficient adsorbent for bioactive substances and dyes.


Assuntos
Nanopartículas , Amido , Amido/química , Porosidade , Amilose/química , Hidrólise , Água/química
16.
Food Res Int ; 178: 113931, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309903

RESUMO

The comprehensive understanding of multi-scale structure of starch and how the structure regulates the pasting/digestion properties remain unclear. This work investigated the effects of γ-ray irradiation with different doses on multi-scale structure and pasting/digestion properties of potato starch. Results indicated that γ-ray at lower doses (<20 kGy) had little effect on micromorphology of starch, increased mainly the amylose content and the thickness of amorphous region while decreased crystallinity, double helix content and lamellar ordering. With the increase of dose, the internal structure of large granules was destroyed, resulting in the depolymerization of starch to form more short-chains and to reduce molecular weight. Meanwhile, amylose content decreased due to the depolymerization of amylose. The enhanced double helix content, crystallinity, lamellar ordering and structural compactness manifested the formation of the thicker and denser starch structure. These structure changes resulted in the decreased viscosity, the increased stability and anti- digestibility of paste.


Assuntos
Amilose , Solanum tuberosum , Amilose/química , Amido/química , Viscosidade , Digestão
17.
Int J Biol Macromol ; 264(Pt 1): 130462, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423435

RESUMO

Banana starch has attracted significant attention due to its abundant content of resistant starch. This study aims to compare the multiscale structure and functional properties of banana starch obtained from five cultivated varieties and investigate the impact of dielectric barrier discharge cold plasma (DBD) treatment on these starch characteristics. All five types of natural banana starch exhibited an elliptical and irregular shape, conforming to the CB crystal structure, with a bimodal distribution of branch chain lengths. The resistant starch content ranged from 88.9 % to 94.1 %. Variations in the amylose content, amylopectin branch chain length distribution, and structural characteristics resulted in differences in properties such as gelatinization behavior and sensitivity to DBD treatment. The DBD treatment inflicted surface damage on starch granules, reduced the amylose content, shortened the amylopectin branch chain length, and changed the relative crystallinity to varying degrees. The DBD treatment significantly increased starch solubility and light transmittance. Simultaneously, it resulted in a noteworthy decrease in peak viscosity and gelatinization enthalpy of starch paste. The in vitro digestibility test showed that 76.2 %-86.5 % of resistant starch was retained after DBD treatment. The DBD treatment renders banana starch with reduced viscosity, increased paste transparency, enhanced solubility, and broadens its potential application.


Assuntos
Musa , Gases em Plasma , Amido/química , Amilopectina/química , Amilose/química , Musa/química , Gases em Plasma/química , Amido Resistente , Viscosidade
18.
Int J Biol Macromol ; 265(Pt 1): 130422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423429

RESUMO

The evolution of the starch fine structure during growth and its impact on the gelatinization behavior of cassava starch (CS) was investigated by isolating starch from South China 6068 (SC6068) cassava harvested from the 4th to 9th growth period. During growth, the short-range ordered structure, crystallinity as well as particle size distribution of starch were increased. Meanwhile, the starch molecular size and amylopectin (AP) proportion increased, while the proportion of amylose (AM) exhibited a decreasing tendency. The chains of short-AM (X ~ 100-1000) were mainly significantly reduced, whereas the short and medium-AP chains (X ~ 6-24) had the most increment in AP. The solubility, thermal stability, shear resistance, and retrogradation resistance of starch were enhanced after gelatinized under the influence of the results mentioned above. This study presented a deeper insight into the variation of starch fine structure during growth and its influence on gelatinization behavior, which would provide a theoretical basis for starch industrial applications.


Assuntos
Manihot , Manihot/química , Amido/química , Amilopectina/química , Amilose/química , Solubilidade
19.
Int J Biol Macromol ; 262(Pt 2): 130107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350585

RESUMO

In developing type 3 resistant starch (RS3) from Canna edulis for use as functional food ingredients, we investigated the synthesis of C. edulis RS3 nanoparticles. Simultaneously, we explored the potential of C. edulis short-chain amylose (SCA)-based RS3 nanoparticles (RS3N) as a targeted delivery system, with a specific focus on colon targeting, yielding promising insights. Our study revealed that the degree of polymerization (DP) of C. edulis SCA, particularly the chains of DP 36- 100, exhibited a robust correlation with the particle size and physicochemical characteristics of C. edulis SCA-based RS3N. Additionally, recrystallization temperature variation (4, 25, and 45 °C) significantly influenced the self-assembly behavior of C. edulis SCA, with the preparation at 4 °C resulting in more uniform particle size distributions. In further expanding the scope of applications for C. edulis SCA-based RS3N, we harnessed the potential of Fe3O4 and curcumin (CUR) as guest molecules to assess drug encapsulation and colon-targeting capabilities. Incorporating Fe3O4 into the self-assembly system led to the production of magnetic RS3N, confirming the successful encapsulation of Fe3O4 within C. edulis SCA-based RS3N. Furthermore, in vitro experiments have demonstrated that CUR-RS3N was stable in the gastrointestinal tract and gradually released curcumin with fermentation in the colonic environment. Collectively, these findings provide invaluable insights into the intricate self-assembly behavior of C. edulis SCA with varying fine structures and recrystallization temperatures during RS3N formation. Moreover, they underscore the colon-targeted properties of C. edulis SCA-based RS3N, opening promising avenues for its application within the food industry, particularly in advanced controlled drug delivery systems.


Assuntos
Curcumina , Nanopartículas , Zingiberales , Amilose/química , Amido Resistente , Amido/química , Preparações Farmacêuticas , Curcumina/química , Zingiberales/química , Nanopartículas/química
20.
Int J Biol Macromol ; 263(Pt 1): 130236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367786

RESUMO

The effects of microwave combined with L-malic acid treatment on the degree of substitution (DS), structure, physicochemical properties, and digestibility of sweet potato starch (A-type), potato starch (B-type), and pea starch (C-type) were evaluated. The order of DS obtained was: DSM-POS > DSM-SPS > DSM-PES. Fourier transform-infrared spectroscopy (FT-IR) showed that the obtained modified starch produced a new absorption band at 1735 cm-1. Scanning electron microscopy (SEM) and polarized light microscopy indicated that different types of native starches exhibited different granular morphologies and appeared to have different degrees of damage, but still had polarized crosses after modification. Sweet potato starch had the smallest particle size, while potato starch had the largest. X-ray diffractometry (XRD) showed that the modified starches still retained the same crystal structure as the native starches, but the relative crystallinity decreased. The apparent viscosity and swelling power of modified starches dropped, but their water/oil holding capacity, amylose content, and resistant starch content all increased. The results demonstrate that the degree of influence on the structure, physicochemical properties, and digestibility of different starches varies under the same modification conditions.


Assuntos
Ipomoea batatas , Malatos , Amido , Amido/química , Micro-Ondas , Ésteres , Espectroscopia de Infravermelho com Transformada de Fourier , Amilose/química , Ipomoea batatas/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...